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Abstract
Fundamental measure theory (FMT) has recently been extended to penetrable
spheres and soft spherical interactions (soft-FMT) (Schmidt M 1999 Phys.
Rev. E 60 R6291; 2000 J. Phys.: Condens. Matter 11 10 163). This paper
presents these theories in a unified description for a pure system and also
describes a simple procedure that is thought to improve the accuracy of FMT
for soft, spherically repulsive interactions. An ultra-soft interaction, which is a
model for the interaction of star polymers with arm number about 8 in a good
solvent, is investigated and a simple procedure is found to significantly improve
the accuracy of bulk thermodynamic and pair-correlation functions generated
by soft-FMT when compared to Monte Carlo simulation results. The simple
procedure also improves prediction of the bulk pressure–density relationship
for a square-shoulder system. Similar gains in accuracy are expected for a wide
range of soft interactions.

1. Introduction

Density functional theory (DFT) has played an important role in understanding how equilibrium
properties of classical many-body systems are related to geometric properties of the individual
particles. In some theories these geometric properties are described by weight functions that
are central to the construction of the functional.

Nordholm and co-workers [1] introduced the first weighted DFT for a three-dimensional
(3D) classical system. They considered the simplest non-trivial system, the mono-disperse
hard-sphere system, and, inspired by Percus’ exact solution for hard rods [2], employed the
simplest weight function geometrically related to the pair interaction, i.e. the weight function
is a hard-sphere Mayer function. In the twenty or so years since this innovation there has been
considerable progress in the development and understanding of weighted-density functionals
for a wide range of systems [3].

Tarazona [4] introduced a much more accurate hard-sphere functional, the ‘smoothed
density approximation’ (SDA), by employing the ‘semi-exact’ Carnahan–Starling equation of
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state for hard spheres [5] and introducing several weight functions fitted to reference 3D bulk
fluid data. Recently, a similar approach has been employed for the Lennard-Jones fluid [6].
Despite the success of the SDA, this general approach suffers from two deficiencies. The
most serious is that bulk fluid data is required as input to the theory. This presents a practical
barrier for applications to fluids where this data is limited. The second is that confidence in the
performance of the functional reduces as the degree of non-uniformity increases since such
functionals take uniform fluid data as input. By depending on such data the functional loses
sight of the ‘fundamental’ geometric properties of the particles.

Rosenfeld [7] and Kierlik and Rosinberg [8] developed the first fundamental measure
theory (FMT) for hard spheres, the fundamental measure functional (called FMF1 in this
paper). The only input required in Rosenfeld’s approach is the form of the pair interaction.
This leads automatically to the definition of a set of weight functions that deconvolute the
Mayer function, and so are geometrically related to the pair interaction. The weight functions,
together with an equation of state for the non-uniform hard-sphere system, reproduce as output
Percus–Yevick (PY) thermodynamics and pair correlations for a 3D bulk fluid [5]. In addition,
Rosenfeld showed [9] that this procedure can be performed in lower dimensions and that it is
exact in one and zero dimensions, i.e. for hard rods and a density dot. As expected, the 3D
functional (FMF1) is very accurate for more general applications such as a hard sphere fluid
confined by a hard wall [8]. Rosenfeld also showed [10] that FMT can be applied to hard
spheroids-of-revolution by application of the Gauss–Bonnet theorem.

By employing the same arguments used by Rosenfeld to derive FMF1 Cuesta and
Martinez-Raton [11] constructed a fundamental measure functional (FMF) for the ‘toy model’
of parallel hard cubes. In this system the angular orientation of each cube is identical and held
fixed so that interactions occur by ‘slapping’ cube faces.

More recently an alternative route to FMT for hard spheres has been discovered [12–
15]. The key to this route is ‘dimensional crossover’ whereby a form of the FMF is
sought such that it remains accurate for density distributions with reduced dimensionality.
That is, accuracy is sought for the 3D functional when applied to hard disks, rods and
density dots. Clearly, the exact hard-sphere functional possesses exact dimensional crossover
behaviour. ‘Theoretical interpolation’ suggests that a functional that is accurate for uniform
densities and extremely non-uniform densities will probably be accurate for intermediate non-
uniformities. The motivation for this approach resulted from analysis of the performance of
the original functional, FMF1 [9, 12]. It was found that the 3D functional was deficient since
it produced divergent terms for hard rods and it could not ‘stabilize’ an array of ‘density-
Gaussians’ (modelling the solid phase), i.e. the grand potential of such a distribution was
always higher than that of the uniform fluid with corresponding average density. In quick
succession [12, 13], several different functional forms of the hard-sphere FMF were proposed
(including a functional called FMF2 in this paper, which is described later) with improved
dimensional crossover behaviour, including stabilization of the hard-sphere solid. Crucially,
it was realized [14] that FMFs could be generated systematically by considering only the
geometry of particles and properties of distributions of density dots. The most sophisticated
of these functionals for hard spheres is due to Tarazona [15]. His functional, called FMF3
in this paper, is constructed to be exact for any distribution of three density dots. However,
for thermodynamic and pair-correlation properties of the uniform 3D hard-sphere fluid these
functionals (FMF1, FMF2 and FMF3) yield the same PY functions. So, finally, FMT avoids
the two significant deficiencies of the SDA approach.

Schmidt has developed several important innovations for FMT. The first [16] concerns
the general deconvolution of the Mayer function enabling creation of soft-FMFs, based on the
fundamental geometric properties of soft particles, for a wide range of model interactions [17].
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However, because the geometry (and weight functions) for a general soft interaction are
different to those for hard spheres, soft-FMT is an extension of the FMT recipe rather than
a complete extension of the theory to soft spheres. That is, soft-FMT yields only the exact
thermodynamics for one density dot, not two or three as is the case for FMT3 applied to
hard-sphere systems. So soft-FMT cannot be expected to be as accurate for general soft
interactions as FMT3 is for hard spheres. A second innovation [18] concerns the application
of dimensional crossover to spheres whose interaction is constant and finite whenever two
spheres overlap, enabling creation of a FMF for penetrable spheres. Because the geometry of
hard and penetrable spheres is identical, FMT3 is equally valid for hard and penetrable spheres.

These ideas are important because they allow construction of density functionals, based
only on geometric properties of the particles and their behaviour in the zero-dimensional (0D)
limit, for soft-matter systems that have received much attention recently, including polymers
and colloidal suspensions. For example, soft-FMT been extended to ‘additive’ mixtures [19]
and applied to a ‘non-additive’ model colloid–polymer mixture [20].

The purpose of this paper is to show that the hard, penetrable and soft-sphere FMFs can
be unified into a single description for a pure system, and to present a simple procedure that
improves the accuracy of soft-FMT for a system of soft, spherically repulsive spheres. For
pure systems of hard and penetrable spheres the resulting functionals are identical to those
previously obtained [15, 18]. It is demonstrated that, for a model describing the interaction of
star polymers with arm number about 8 in a good solvent [16, 21], this procedure does indeed
improve soft-FMT [16, 17, 21] with respect to 3D bulk thermodynamics and pair correlations.
The 3D bulk thermodynamic properties of a square-shoulder fluid are also investigated, and
again the accuracy is improved. It is expected that improved accuracy will be seen for other
soft interactions, and for soft systems with lower dimensionality. However, the procedure may
lead to a reduction in accuracy when the 3D functional is applied to a single density dot, i.e. the
0D system.

2. Fundamental measure functional

2.1. Definition

Within soft-FMT the intrinsic excess Helmholtz free-energy functional is approximated as

Fex(T, [ρ(r)]) = kB T
∫

dr1 �({nα(r1, T )}) (1)

where kB and T are Boltzmann’s constant and the temperature, and for a pure system the
weighted densities (or fundamental measures), nα , are given by [21]

nα(r1, T ) =
∫

dr2 ρ(r2)wα(r12, T ) (2)

where wα are density-independent weight functions and r12 = |r1 −r2|. The subscript α labels
the type of weighted density and weight function, and can either be scalar (wα, nα), vectorial
(wα,nα) or tensorial (ŵα, n̂α). The excess free energy density, �, is given by [21]

� = �1 + �2 + �3

�1 = n0µ0D

�2 = (n1n2 − nv1 · nv2)µ
′
0D

�3 = (nv2 · n̂t2 · nv2 − n2nv2 · nv2 − tr(n̂3
t2) + n2 tr(n̂2

t2))µ
′′
0D/(16π/3)

(3)

where kB T µ0D is the excess chemical potential in a 0D cavity, tr denotes the trace and a dash
denotes the partial derivative with respect to n3. This is the general expression for Tarazona’s
FMF3 [15], except that the form of µ0D remains to be specified.
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2.2. Low-density limit

The weight functions are determined so that the low-density limit of the pair-direct correlation
function, c(2)(r), is exact;

c(2)(r; ρ = 0) = f (r) = exp(−φ(r)/kB T ) − 1 = −2µ′
0D(w03(r) + w12(r) − wv1v2(r)) (4)

where f (r) is the Mayer function corresponding to the pair potential φ, and wab indicates the
convolution wα ⊗ wβ with implied scalar product. This requirement forms the low-density
limit of the theoretical interpolation. Clearly, the weight functions must deconvolute a function
linearly related to the Mayer function.

Schmidt showed [17] that the weight functions that deconvolute the negative of the Mayer
function are given by

w̃2(k) = ±
√

ik f̃ (k)

w2(r) = −∂w3(r)/∂r

wv2(r) = w2(r)r/r

w1(r) = w2(r)/4πr

wv1(r) = w1(r)r/r

w0(r) = w1(r)/r

(5)

where the tilde denotes a one-dimensional Fourier transform:

f̃ (k) =
∫ ∞

−∞
dr f (r) exp(ikr ). (6)

So for hard and penetrable spheres of radius R, w2 becomes

w2(r) = δ(R − r)

√
1 − exp(−V/kB T )

µ′
0D(ρ = 0)

(7)

where V is the value of φ when two spheres are closer than 2R. More generally [17], for any
spherically repulsive interaction

w3(r = 0) =
√

1 − exp(−φ(r = 0)/kB T )

µ′
0D(ρ = 0)

. (8)

Finally, the tensorial weight function is formed by the dyadic product of a vector density and
a unit spatial vector [17, 21];

ŵt2(r) = wv2(r)r/r. (9)

Properties of the uniform fluid follow immediately. The excess Helmholtz free-energy density,
f ex , is

f ex(ρb)

kB T
= n0µ0D + n1n2µ

′
0D + n3

2µ
′′
0D/24π (10)

and the pair-direct correlation function is

c(2)(r12; ρb) ≡ −
(

δ2 Fex

kB T δρ(r1)δρ(r2)

)
ρb

= 2(µ′
0Dw03(r12) + n2µ

′′
0Dw13(r12) + (n1µ

′′
0D + n2

2µ
′′′
0D/8π)w23(r12))

+ (n0µ
′′
0D + n1n2µ

′′′
0D + n3

2µ
′′′′/24π)w33(r12)

+ 2µ′
0D(w12(r12) − wv1v2(r12)) + n2µ

′′
0D(w22(r12) − wv2v2(r12))/4π (11)

where ρb is a uniform (bulk) density.
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2.3. Zero-dimensional limit

Soft-FMT is fully specified by µ0D(n3). The soft-FMT [16] defines kB T µ0D to be the excess
chemical potential when particles are confined in a cavity such that all particle centres coincide.
This situation corresponds to a density dot or the 0D limit and it forms the second interpolation
state of soft-FMT.

Following [18], the excess chemical potential in the 0D limit is given exactly by

kB Tµ0D = kB T (µtot
0D − µid

0D) = kB T ln(V0Dz/N̄) (12)

where kB Tµtot
0D is the total 0D chemical potential, z = exp(µtot

0D) is the fugacity and N̄ is the
average number of particles in V0D . In the grand canonical ensemble the partition function is
given by

	 =
∞∑

N=0

∫
drN

zN

N!
exp(−VN/kB T ) (13)

where drN indicates the product of N spatial integrals and VN is the total potential of a
configuration of N particles. The average occupation number, N̄ , is given by

N̄ = −∂ ln(	)/∂µtot
0D = z∂	

	∂z
. (14)

The 0D grand partition function is

	 =
∞∑

N=0

(V0Dz)N bN(N−1)/2/N! (15)

where b = exp(−φ(r = 0)/kB T ). So, given N̄ , these relations can be inverted to obtain
V0Dz(N̄ ) and hence µ0D(N̄). Finally, the value of n3 at the centre of the cavity is related to N̄
to obtain µ0D(n3) and this expression is also used for general density distributions. In the low-
density limit, N̄ → 0, it follows that µ′

0D → (1 − b)∂ N̄/∂n3. So for any spherically repulsive
interaction a mutually consistent definition of the soft-FMF is obtained when w3(r = 0) = 1,
and this constraint generates a unique set of weight functions for each interaction.

The above relations, (1)–(3), (5), (6), (9), (12), (14) and (15) fully define FMT in a unified
description for pure systems of soft, penetrable and hard spheres. It yields the exact pair-
correlation and thermodynamic functions for a uniform 3D fluid in the low-density limit and is
also exact in the 0D limit. By construction, it is exact for hard and penetrable spheres for any
3D distribution of three density dots, but for other soft interactions it is exact for one density
dot only. This is because FMF3 is derived for the unique geometry of hard and penetrable
spheres only. Earlier versions of FMT [7, 13] have different forms for �3:

FMF1 : �3 = (n3
2 − 3n2nv2 · nv2)µ

′′
0D/24π

FMF2 : �3 = n3
2(1 − (nv2/n2)

2)3µ′′
0D/24π

(16)

that generate different functionals. Each of these functionals (FMF1, FMF2 and FMF3) yields
the same 3D bulk thermodynamics (10) and pair correlation functions (11).

For interactions with b = 0, i.e. that are infinite at the origin, we have

µ0D = − ln(1 − n3) (17)

and so for these interactions the thermodynamics of the system are distinguished only by the
form of w3. Also, whatever the form of w3, the functional predicts a finite upper limit for n3

and hence for the bulk density of a given phase. However, for interactions that give b �= 0,
i.e. that are finite at the origin, we find that µ0D is rather more complex and, whatever the form
of w3, the functional predicts that n3 does not have a finite upper limit.
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It is easy to imagine pair interactions for which these properties are inappropriate. For
example, the square-shoulder potential defined by the pair interaction

φ(r) =




∞; r � rs

φs; rs < r � σ

0; r > σ

(18)

is incorrectly predicted to have an upper limit n3 = 1 for all values of rs and φs . If φs/kB T
is large then the upper limit for n3 should be close to (σ/rs)

3. Similarly, any interaction that
diverges at the origin, such as the interaction that models star polymers in good solution [17],
is erroneously predicted to have a finite upper limit for n3. In fact, the predicted high-density
limit for these systems is inappropriate with respect to any dimensionality except zero. For
example, FMF3 for star polymers has the same incorrect finite upper limit for n3 when the
functional is applied to star polymers confined in one and two dimensions.

However, for penetrable spheres

φ(r) =
{

φs; 0 � r � σ

0; r > σ
(19)

and hard spheres (φs = ∞) FMF3 has appropriate high-density limit behaviour, i.e. n3 < 1
for hard spheres and n3 has no upper limit for penetrable spheres. The error in predicting
high-density behaviour within FMF3 for more general interactions arises because the high-
density limit of a bulk 3D phase is dictated by µ0D and hence φ(r = 0), while the form of φ

for r > 0 only enters into the thermodynamics through the weight functions. But for hard and
penetrable spheres φ(r � σ) is constant and so φ(r = 0) is representative of the interaction
for all r � σ .

2.4. σ -cavity limit

This paper proposes an alternative prescription for the unified FMT for pure systems. Rather
than attempting to construct a version of FMT for a general soft interaction that is exact for
any distribution of three density dots (a daunting task), it is instead proposed that, for a 3D
system, FMT3 and the definition of the soft weight functions are retained and an alternative
prescription for µ0D is found. Nevertheless, a prescription for µ0D is sought that reproduces
the correct expression for hard and penetrable spheres, since FMT3 is derived explicitly and
is accurate, for this unique geometry. The aim is to include within µ0D the effect of φ for
r � σ on the thermodynamics in an approximate manner, i.e. to generate a ‘soft-µ0D’. With
this in mind, attention is drawn to the fact that, for hard and penetrable spheres, the excess
chemical potential of such systems is identical when confined such that (a) particle centres
coincide and (b) all pairs of particles overlap. The first case corresponds to the 0D limit and the
excess chemical potential is kB T µ0D . In this paper the second case is called the σ -cavity limit
and has excess chemical potential equal to kB T µσC . So, for spherically repulsive interactions
with finite range σ , the σ -cavity is a sphere for a 3D system with diameter σ . For hard and
penetrable spheres the equality, µσC ≡ µ0D , holds.

This paper proposes that soft-FMT be re-written with µσC replacing µ0D . The grand-
partition function can be re-written exactly as

	 =
∞∑

N=0

(VσC z)N bN(N−1)/2
N /N! (20)
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where VσC is the volume of the σ -cavity and bN is a series of coefficients. For N = 0, 1, 2
and a 3D system, these coefficients can be calculated exactly:

b0 = 1

b1 = 1

b2 = 4π

VσC

∫ σ/2

0
dr1 r2

1 b̄(r1)

(21)

where

b̄(r1) = π

VσC

{
4

∫ σ/2−r1

0
dr2 r2

2 b(r2) +
∫ σ/2+r1

σ/2−r1

dr2 r2b(r2)(σ
2/4 − (r1 − r2)

2)/r1

}
(22)

and now b(r) = exp(−φ(r)/kB T ). Clearly, for hard and penetrable spheres bN = b(r = 0)

for all N . But for more general interactions, for N > 2, it becomes increasingly difficult to
determine bN as N increases. This paper sets bN = 0 for N > 2. Then µσC(N̄ ) is analytic
and given by [18]

µσC = kB T ln

(√
(N̄ − 1)2 + 2N̄(2 − N̄ )b2 + N̄ − 1

b2(2 − N̄ )N̄

)
(23)

and in the low-density limit µ′
σC(n3) → (1 − b)∂ N̄/∂n3. For penetrable spheres this result

is identical to that obtained by Schmidt [18]. For hard spheres, b2 = 0 and the functional
reduces to that obtained by Tarazona [15]. For more general soft interactions the correct result
for hard and penetrable spheres, ∂ N̄/∂n3 = 1, is enforced for all interactions.

3. Results

The accuracy of the 0D and σ -cavity soft-FMT approaches is compared for two model pair
potentials at the level of pair functions and thermodynamics for bulk 3D fluids. This is
equivalent to comparing the first three (the zeroth, first and second) coefficients generated
by a density expansion (a functional Taylor series expansion about a bulk density) of the free-
energy functional of each theory [20], and gives an indication of the accuracy of each theory
when applied to the inhomogeneous fluid. Further detail could be obtained by comparing their
dimensional crossover properties.

3.1. Star-polymer fluid; q = 3

A star polymer [23] consists of polymer chains of equal length that are joined at a central
‘node’. Within soft-FMT the interaction between two star polymers in a good solvent has been
modelled by [16]

w3(r) =
{

1 − xq; x � 1

0; x > 1
(24)

where q controls the softness of the interaction and x = 2r/σ . The value q = 3 models star
polymers with about 8 ‘arms’, an ultra-soft system. Using the definitions for the soft weight
functions (7), this yields an effective pair potential

φ∗3/kB T =




− ln(0.05x6); x � 1
− ln(−0.05x6 + 2x3 − 4.5x2 + 3.6x − 1); 1 < x � 2

0; x > 2.

(25)
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(a) (b)

(c) (d)

Figure 1. (a) Radial distribution function, g(r), and pair-direct correlation function, c(2)(r), for a
model star-polymer fluid with q = 3 (see text) at a reduced bulk density, ρσ 3 = 0.402. The small
circles, full curves and dotted curves correspond to results from GCEMC simulation, σ -cavity
and 0D soft-FMFs, respectively (see text). r is the radial distance and σ is the length scale of
the star-polymer interaction. (b) As for (a) except that ρσ 3 = 0.889. (c) As for (a) except that
ρσ 3 = 1.366. For the 0D FMF approach, c(2)(r = 0) = −11.9. (d) As for (a) except that
ρσ 3 = 1.818. For the 0D FMF approach, c(2)(r = 0) = −32.8.

This in turn yields b2 = 0.21 from (21) and (22). Results for pair-correlation functions and
excess pressure of a bulk 3D fluid of star polymers with q = 3 are shown in figures 1(a),
(b), (c), (d) and 2(a), respectively. In each case the pair-direct correlation function, c(2)(r), is
obtained from (11), i.e. directly from the FMFs. The corresponding pair-distribution functions,
g(r), are obtained from each c(2)(r) by application of the Ornstein–Zernike relation [5]. The
corresponding excess pressures, shown in figure 2(a), are obtained from the respective FMF
by

Pex = kB Tρ2

(
∂(�/ρ)

∂ρ

)
T,V

. (26)

Clearly, this will not correspond to the excess pressure of the real system of star polymer plus
solvent, but the comparison in figure 2(a) is useful as a comparison of the accuracy of the
respective theories. The theories are compared with grand-canonical ensemble Monte Carlo
(GCEMC) simulation results.

The simulation parameters and results for pressure and density are given in table 1. The
simulation pair-direct correlation functions, c(2)(r), shown in figures 1(a)–(d) are obtained
from the simulation pair-distribution functions, g(r) = h(r) + 1, and the Ornstein–Zernike
relation [5]. In each case g(r) for r > L/2 is set to 1, where L is the simulation box
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(a) (b)

Figure 2. (a) Reduced excess pressure (see text) for a model star-polymer fluid with q = 3 (see
text) for a range of bulk densities. The small circles, full curve and dotted curve correspond to
results from GCEMC simulation, σ -cavity and 0D soft-FMF approaches, respectively. The reduced
excess pressure is drawn on a logarithmic scale. Statistical errors from simulation are always less
than the size of the large dots at the level of 1 s.d. (b) Reduced excess pressure (see text) for
a model square-shoulder fluid with (rs/σ)3 = 0.5 and φs/kB T = 1.0 (see equation (18)) for a
range of bulk densities. The small circles, full curve, dotted curve, broken curve and chain curve
correspond to results from GCEMC simulation, σ -cavity (b2 = 0.04) soft-FMT, 0D soft-FMT,
σ -cavity (b2 = 0.1) soft-FMT and mean-field (see equation (28)) approaches, respectively. The
reduced excess pressure is drawn on a logarithmic scale. Statistical errors from simulation are
always less than the size of the large dots at the level of 1 s.d.

Table 1. GCEMC simulation parameters and results for systems modelling star polymers in good
solution with q = 3 (see text). z = exp(βµ) is the activity, Nrun and Neqm are the number of
attempted Monte Carlo moves used to gather statistics and to achieve equilibrium respectively. L
is the simulation box length, ρ is the density and Pex is the excess (over ideal gas) pressure. The
numbers in parentheses indicate the standard deviation in the last significant figure.

z∗ = zσ 3 Nrun (106) Neqm (106) L∗ = L/σ ρ∗ = ρσ 3 Pex∗ = Pex σ 3/kB T

1 10 1 6 0.4020(4) 0.189(1)
10 10 1 6 0.8893(6) 1.174(3)

100 10 1 8 1.3657(7) 3.295(5)
1000 10 1 8 1.8180(6) 6.509(6)

length. Various values of the box length are chosen, with the final value for L chosen for each
chemical potential such that there is no significant change in the simulation results (including
pair-correlation functions) when it is increased by 2σ . A radial grid of 100 points per σ is
chosen and fast Fourier transforms [24] are employed.

It can be seen that, for the bulk densities considered, the σ -cavity soft-FMT approach is
generally closer to the simulation results than the 0D soft-FMT approach. In particular, for
excess pressure the σ -cavity approach is quite accurate over the density range studied and is
much more accurate than the 0D approach. The 0D functional is accurate at low to moderate
densities, but loses accuracy as the bulk density is increased beyond this regime. However, the
σ -cavity functional remains accurate up to reasonably high densities, and loses accuracy as
the average separation of particles decreases below σ . Note that DFT does not automatically
constrain g(r) obtained via the Ornstein–Zernike relation from c(2)(r) obtained directly from
functional differentiation of the theory. So the unphysical values of g(r) for r/σ � 0.5 are of
little concern and can be corrected by finding solutions in the test-particle limit.
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Table 2. GCEMC simulation parameters and results for the square-shoulder potential (see
equation (18)) with (rs/σ)3 = 0.5 and φs/kB T = 1.0. The meaning of the column headings
and numbers in parentheses is the same as for table 1.

z∗ Nrun (106) Neqm (106) L∗ ρ∗ Pex∗

1 5 1 4 0.2883(8) 0.187(7)
10 5 1 4 0.5430(8) 0.90(1)

100 5 1 4 0.7583(8) 2.16(4)
1 000 5 1 4 0.937(1) 3.99(7)

10 000 5 1 4 1.088(2) 6.1(2)
100 000 5 1 4 1.224(4) 8.7(2)

3.2. A square-shoulder fluid

The square-shoulder pair potential (18) has previously been employed to model liquid metals,
but it could also form the reference potential of a perturbation theory of water (see [25]
and references therein). In the latter case the square-shoulder models the resistance to the
breaking of hydrogen bonds as water is compressed to high pressure. Despite these important
applications, the square-shoulder system has not previously been analysed within soft-FMT.
Figure 2(b) shows the prediction of excess pressure by the 0D and σ -cavity (b2 = 0.04) soft-
FMT approaches compared with GCEMC simulation results for a square-shoulder system with
(rs/σ)3 = 0.5 and φs/kB T = 1. The GCEMC simulation parameters and results are given in
table 2. The excess pressure is calculated from the simulated g(r) using [5]

Pex

kB T
= 2π

3
ρ2(g(rs)r

3
s + g(σ )σ 3(1 − exp(−φs/kB T ))). (27)

Once again, various values of the box length are chosen, with the final value for L chosen for
each chemical potential such that there is no significant change in the simulated pressure or
density when it is increased by 2σ .

The soft-FMT results are obtained by making use of the relations in [17] equating moments
of the Mayer function with the ‘volumes’, ξα , of the soft-FMT weight functions. For the
σ -cavity functional, the correct volumes are obtained by dividing each ξα by (1 − b2)

1/2.
These relations allow calculation of the bulk equation of state from the pair potential, together
with (4), without explicit calculation of weight functions. Also shown in figure 2(b) are the
results obtained from the σ -cavity approach with b2 = 0.1 and a simple mean-field DFT, with
the excess pressure given by

Pex = Pex
H S(ρ/2) + 2πφsρ

2/3 (28)

for this square-shoulder fluid, where Pex
H S is the excess pressure of the reference hard-sphere

system (using the PY equation of state for hard spheres). This type of theory is commonplace
in the DFT literature [3], particularly when treating the Lennard-Jones fluid. Once again, the
σ -cavity soft-FMT approach (b2 = 0.04) yields results that are closer to simulation than the
0D approach. However, the agreement is not as good for this system as for the star polymer
system with q = 3 above. However, choosing b2 = 0.1 provides a good fit to the simulation
data. The simple mean-field theory generally performs as well as the σ -cavity functional,
and better than the 0D functional, for the excess pressure at high densities, but is poor at low
densities.
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Figure 3. Reduced chemical potential, µ/kB T , for a model penetrable sphere fluid with
φs/kB T = 2.0 (see equation (19)) for a range of bulk densities predicted by the σ -cavity and
0D soft-FMTs. Note the oscillatory regime for ρσ 3 > 1.5.

4. Conclusions

Soft-FMT has been unified with the hard and penetrable-sphere FMFs for pure systems.
The performance of the unified approach, called the ‘0D’ functional in this paper, has been
improved, at least for the systems considered here. The improved approach, that uses the
‘σ -cavity’ functional, can be applied to a wide range of spherically repulsive pair potentials.
However, its accuracy regarding pair potentials with significant attractive forces, such as the
Lennard-Jones potential, has not been assessed.

Similar improvements in accuracy are expected for most other density distributions,
including the 2D and 1D limits. That is, similar improvements are expected when the 3D
theories are applied to 2D and 1D distributions. However, when the 3D theories are applied to
0D distributions (a single density dot) the original 0D theory will generally be more accurate
since it is defined to be exact in this limit. Note, however, that 0D versions of the σ -cavity
approach and the 0D approach are identical (since the σ -cavity corresponds to the 0D limit in
this case). This observation leads one to speculate whether the correct dimensional crossover
can be imposed on µσC . Perhaps a more fruitful task would be to attempt construction of a
soft-FMF that is exact for at least two density dots for the square-shoulder pair potential with
arbitrary rs and φs . If successful, the insight gained might lead to the creation of accurate
FMFs for more general soft interactions.

For the star-polymer system studied here the σ -cavity functional is probably limited in
utility to n3 < 0.5. It is possible that the use of density-dependent weight functions might
improve performance in this respect. Schmidt has suggested such an approach based on the
Wigner–Seitz radius [16, 17]. Alternatively, for high-density systems an SDA-type functional
could be used [6]. But, as mentioned in the introduction, this approach suffers from two major
deficiencies, namely that reference pair-correlation and thermodynamic data for the uniform
fluid is required as input, and the functional cannot be expected to be accurate for extreme
inhomogeneities.

The σ -cavity functional can be tuned to fit reference data, if required, by adjusting the
values of bN . For example, choosing b2 = 0.1 provides a good fit to the excess pressure for
the above square-shoulder system over the density range studied here. However, a feature of
the σ -cavity functional and the 0D functional for penetrable spheres is that they can predict a
series of first-order isotropic fluid–fluid transitions with increasing pressure, with the number
of predicted transitions often increasing with the number of non-zero terms in the series, bN .
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This regime begins above the densities considered in this paper. This is illustrated in figure 3
which shows the reduced bulk chemical potential, µ/kB T , predicted by the σ -cavity and 0D
functionals for penetrable spheres with φs/kB T = 2 for a range of bulk densities up to n3 = 5.
Note how the oscillatory chemical potential regime in this example begins at bulk densities
where the average separation of particles is somewhat less than σ , i.e. ρσ 3 > 1.5. The σ -
cavity functional can predict qualitatively similar behaviour for a wide range of soft fluids,
depending on the values in the series bN , when it is not expected. So it is unlikely that the
σ -cavity functional can be fitted to reference data over a very wide range of densities.

It is not clear whether the unified 0D functional or the σ -cavity functional can be extended
to mixtures. Schmidt has extended soft-FMT to mixtures [19] when the pair potential of each
component is not finite at the origin. For more general interactions, a first step in this direction
would be to consider a binary mixture of penetrable spheres with different rs and φs .
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